Top K问题在数据分析中非常普遍的一个问题(在面试中也经常被问到),比如:
从20亿个数字的文本中,找出最大的前100个。
解决Top K问题有两种思路,
最直观:小顶堆(大顶堆 -> 最小100个数); 较高效:Quick Select算法。 LeetCode上有一个问题215. Kth Largest Element in an Array,类似于Top K问题。
- 堆
小顶堆(min-heap)有个重要的性质——每个结点的值均不大于其左右孩子结点的值,则堆顶元素即为整个堆的最小值。JDK中PriorityQueue实现了数据结构堆,通过指定comparator字段来表示小顶堆或大顶堆,默认为null,表示自然序(natural ordering)。
小顶堆解决Top K问题的思路:小顶堆维护当前扫描到的最大100个数,其后每一次的扫描到的元素,若大于堆顶,则入堆,然后删除堆顶;依此往复,直至扫描完所有元素。Java实现第K大整数代码如下:
public int findKthLargest(int[] nums, int k) { PriorityQueueminQueue = new PriorityQueue<>(k); for (int num : nums) { if (minQueue.size() < k || num > minQueue.peek()) minQueue.offer(num); if (minQueue.size() > k) minQueue.poll(); } return minQueue.peek();}
- Quick Select
Quick Select [1]脱胎于快排(Quick Sort),两个算法的作者都是Hoare,并且思想也非常接近:选取一个基准元素pivot,将数组切分(partition)为两个子数组,比pivot大的扔左子数组,比pivot小的扔右子数组,然后递推地切分子数组。Quick Select不同于Quick Sort的是其没有对每个子数组做切分,而是对目标子数组做切分。其次,Quick Select与Quick Sort一样,是一个不稳定的算法;pivot选取直接影响了算法的好坏,worst case下的时间复杂度达到了O(n2)。下面给出Quick Sort的Java实现:
public void quickSort(int arr[], int left, int right) { if (left >= right) return; int index = partition(arr, left, right); quickSort(arr, left, index - 1); quickSort(arr, index + 1, right);}// partition subarray a[left..right] so that a[left..j-1] >= a[j] >= a[j+1..right]// and return index jprivate int partition(int arr[], int left, int right) { int i = left, j = right + 1, pivot = arr[left]; while (true) { while (i < right && arr[++i] > pivot) if (i == right) break; while (j > left && arr[--j] < pivot) if (j == left) break; if (i >= j) break; swap(arr, i, j); } swap(arr, left, j); // swap pivot and a[j] return j;}private void swap(int[] arr, int i, int j) { int tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp;}
Quick Select的目标是找出第k大元素,所以
若切分后的左子数组的长度 > k,则第k大元素必出现在左子数组中; 若切分后的左子数组的长度 = k-1,则第k大元素为pivot; 若上述两个条件均不满足,则第k大元素必出现在右子数组中。 Quick Select的Java实现如下:
public int findKthLargest(int[] nums, int k) { return quickSelect(nums, k, 0, nums.length - 1);}// quick select to find the kth-largest elementpublic int quickSelect(int[] arr, int k, int left, int right) { if (left == right) return arr[right]; int index = partition(arr, left, right); if (index - left + 1 > k) return quickSelect(arr, k, left, index - 1); else if (index - left + 1 == k) return arr[index]; else return quickSelect(arr, k - index + left - 1, index + 1, right);}
上面给出的代码都是求解第k大元素;若想要得到Top K元素,仅需要将代码做稍微的修改:比如,扫描完成后的小顶堆对应于Top K,Quick Select算法用中间变量保存Top K元素。
- 参考资料
[1] Hoare, Charles Anthony Richard. "Algorithm 65: find." Communications of the ACM 4.7 (1961): 321-322. [2] James Aspnes, QuickSelect.